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From: Jess Dervin-Ackerman <jess.dervin-ackerman@sierraclub.org>

Sent: Tuesday, October 06, 2015 12:29 PM

Te: Cappio, Claudia; Schaaf, Libby; DL - City Council; Cole, Doug

Subject: Articles and Research for Public Record: Coal Exports Public Hearing

Attachments: grl25887-fig -0001_10.1029%2F2009GL037950.pptx; Zhang -~ transpacific transport of

ozone -- 2008,pdf; Zhang -- Intercontinental source attribution of ozone ~- 2009.pdf;
PNAS 2014 Feb 111(5) 1736-41, Fig. 2.ppt; PNAS-2014-Lin-1736-41.pdf; Keep coal out
of Oakland port - San Francisco Chronicle.pdf; Coal Free Oakland Letter to Mayer and
Council 9.20.15.pdf; Coal Free Oakland Petition Signers10.5,15.xls; Assembly Jein
Resolution 35 Coal Exports.pdf

To Whom It May Concern,

Please consider the attached articles, research, policy, community sign on letter, and petition signers as part of
the publie record for the public hearing on coal through the Oakland Global Project.

Sincerely,

Jess Dervin-Ackerman

- O

Jess Dervin-Ackerman
Conservation Manager

8lerra Club, San Francisco Bay Chapter
25630 San Pablo Ave, Suite |
Berkeley, CA 94702

Office: (610) 848 - 0800 ext. 304
Cell: (510) 603-7677
jess.dervin-ackerman@sierraclub.or

"The 5th annual David Brower Dinner is on October 22nd in San Francisco! This event brings together
gsome of the region's most influential change-makers to honor local environmental heroes and the achievements
of the Bay Chapter. Join us!

Ttekets and sponsorships available here.
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Transpacific transport of ozone pollution and the effect of recent
Asian emission increases on air quality in North America: an
integrated analysis using satellite, aircraft, ozonesonde, and surface
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Abstragt, We use an ensemble of aircraft, satellite,
sonde, ond surfuce observations for April-May 2006
(NASA/INTEX-B aireraft campaign) to better understand
the mechanisms for transpacific ozone: pollution and its: im-
plications for Notth American air quality. The observations
ate interproted with a- global 3-D chemical teansport model
(GBOS8-Chem), OMI NOy satellite observations constrain
Asiun unthropogenic NOy emissions and indicate a factor of
2 inerease from 2000 to 2006 in China. Satellite observa-
tlons of €O from AIRS and TES indieate two major events
of Aslan transpacifio pollution duting INTEX-B. Correlation
batween TES CO and ozone observations shows evidence

Correspondence to: L. Zhang
(linzhang@fhs. harvard.edn)

for transpacific ozone pollution, The semi-permanent Paclfic
High and Aleutiant Low cause splitting of transpacific pollu-
tion plumes over the Northeast Pacific. The northern branch
circulates around the Alcutian Low and lias little impact on
Notth America. The southern branch oirculates around the
Pacific High and some of that air impacts western Nerth
America. Both aireraft measurements and model results
show sustained ozone psaduction driven by peroxyaeetylnl-
trate (PAN) decomposition in the. southern branch, toughly
doubling the transpaéific influence from ozone produced n
the Asian boundary layer. Model simulation of ozone obser-
vations at Mt, Bachelor Observatory in Oregon (2.7 km-alti-
tude) indicatos a méan Asian ozone pollution contribution of
94:3 ppbv to the mean obsetved concentration of 54 ppbv, re-
flecting mostly an enhancement in background ozone rather
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than episodic Asian plumes, Asian pollution enhanced sur-
face ozone concentrations by 5-7 ppbv over western North
America in spring 2006, The 2000-2006 rise in Asian an-
thropogenic emissions increased this influence-by 1-2 ppbv.

1 Ditrodaction

Rapid industrial dévelopment in-eastern Asia and specifically
in Cliina has resulted in unprecedented growth inNOx emis-
sions with implications for both regional and global tropo-
sphieric ozone (Wild and Akimoto, 2001). Efforts to improve
US air quality throngh domestic emission controls could be
patily compromised by Asian industrialization and the asso-
ciated transpacific transport of poliution (Jacob et al., 1999,
Fiore et al,, 2002), Better understanding the impact of ris-
ing Asian NO, emissions on transpacific ozone pollution
and surface ozone air quality in the United States is there-
fore: of great interest, We address this issue here through a
global 3-D model analysis. of observations from the NASA
Intergontinental: Chemical Transport Expeumem - Phase B
(INTEX-B) aircraft campaign, conducted in spring 2006-over
the Northeast Pacific. We integrate into our analysis concur-
rent measurements fror ground sites, sondes, and satellites.

Ozone is produced in the troposphere by the photochemi-
cal oxidation of CO and volatile organic compounds (VOCs)

Jinthe presence of nitrogen oxides (NOx=NO+NOz). On a.

global scale, the photochemical production- of ozone domi-
nates over-the stratospheric influx (Prather and Ehhalt, 2001;
Sudo and Akimoto, 2007), and is limited mostly by the sup-
ply of NOx and methane (Wang ot al.,, 1998b), Anthro-
pogenic sources of NOy from combustion combined with
the global rise in methane have probably doubled the tro-
pospheric ozone burden in the northern hemisphere over the
past century (Prather and Ehbalt, 2001). Ozone has a life-
time of days in the.continentdl boundary layer but weeks in
the free troposphere (Jacob et al., 1996; Thompson et al.,
1996; Wang et.al., 1998b; Fiore et al., 2002), and thus can
affect continents downwind.

The dependence of ozone production on NOy is highly
nionlinear;. the ozone production efficiency (OPE) per unit
NOy consumed increases rapidly as the NOy concentration
decreases (Liu et al,, 1987). Ozone production within' the
continental boundary layer is relatively inefficient because
of the high<NOy conditions, A small fraction of emitted NOy
exported to the fiee troposphere by frontal lifting, deep con-
vection, or boundary layer venting can lead to disproportion-
ately large ozone production in the free troposphere over the
continent and downwind (Jacob ct al.,, 1993; Thompson et

al,, 1994), The peroxyacetylitrate (PAN) reservoir-for NOy

can be vented from the boundaty layer and transported on
a global scale at cold temperatures, eventually decomposing
to telease NOy in the remote troposphere as air masses. sub-
side and producing ozone with very high efficiency. Previ-
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ous studies using aircraft measurements from the PHOBEA,
TRACE-P, and ITCT-2K2 campaigns (Kotchenruther et al.,
2001; Heald et al,, 2003; Hudman et al., 2004) found that
PAN decomposition may represent a dominant component
of the ozone enhancement in transpacific Asian pollution
plumes. The INTEX-B campaign offers far more geograph-
ical coverage over the Northeast Pacific and we will see that
it enables a better understanding of the mechanisms of ozone
production in transpacific plumes.

Asjan pollution is typically exported to the Pacific by
frontal lifting in warm conveyor belts (WCBs), convection,
and orographic lifting (Liu et al., 2003; Brock et al., 2004;
Liang et al., 2004; Kiley. et al., 2006; Dickerson et al., 2007).
It can then be transported across the Pacific in 5-10 days in
the fiee troposphere (Yienger et al.,, 2000; Jaffe et al,, 2001;
Stohl et al., 2002). The mean transport time to the surface of
western North America is of the order of 2-3 weeks (Liu and
Maugzerall, 2005). The transport is most rapid and frequent
in spring due to active cyclonie activity and strong westerly
winds (Forster et al., 2004; Liang et al,, 2004). While Asian
plumes with correlated CO and ozone are often observed in
the fiee troposphere and at mountain sites over the western
United States (Price et al,, 2004; Jaffe ct al., 2005; Weiss-
Penzias et al., 2007), no such plumes are observed at the
surface for ozone (Goldstein et al., 2004), presumably be-
cause of dilution during entrainment into the boundary layer
(Hudman et al., 2004). Asian ozone pollution in US surface
air thus mostly reflects an increase in background concentra-
tions (Fiore et al., 2003). Background ozong levels in air en-
tering western North America have inereased approximately
10ppbv between 1984 and 2002 (Jaffe et al, 2003) and
ozone concentrations across the western United States show
a significant increase with a mean trend of 0.26 ppbva™!
(Jaffe and Ray, 2007). The cause for this increase is. not clear
but rising Asian emissions tnay be a contributing source,

A unique feature of the INTEX-B campaign was the avail-
ability of extensive satellite observations of tropospheric
ozone, NQ, and CO to complement the aircraft observa-
tions. Satellites provide a growing resource to quantify emis-
sions .of ozone precursors (Martin et al., 2006) and to map
the transpacific transport of pollutants (Heald et al., 2003,
2006). They greatly expand the temporal and spatial scale
of in situ measurements but are limited in precision, ver-
tical resolution, and the number of species observed. Air-
craft vertical profiles during INTEX-B provided validation
data for the OMI (NO3), AIRS (CO), and TES. (ozone, CO)
satellite sensors (Boersma et al,, 2008; Luo et al., 2007b;
Richards et al,, 2008). Here we use these satellite observa-
tions to constrain Asian NOy emissions (NOy from OMI),
track transpacific plumes (CO from AIRS as a long-lived pol-
lution tracer), and observe ozone production in transpacific
Asian plumes (ozone and CO from TES), We cxamine the
consistency between the satellite and aircraft information and
apply the aircraft data to further analysis of plume chemistry.
We also use sonde data from INTEX Ozonesonde Network

www.atmos-chem-phys.net/8/6117/2008/
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Study (TONS) (Thompson et al,, 2008) to-test model results,
and use ground-bused measurements at Mount Bachelor Ob-
getvatory in central Oregon (Jaffe et al., 2005; Reidmiller et
al,, 2008) to link observed Asian pollution influences in the
free: tropoaphere to North American surface aiv-quality.

2  Observations and meodel
2.1 Inesltu mensurements

The NASA INTEX-B aitcraft mission took place from 17
April to 15 May 2006 over the Northeast Paclﬁc and the
west coast of North America (Singh et al,, 2008'), It used
the NASA DC-8 (ceiling 12 km) as its primary platform op-
erating out of Honolulu and Anchorage, complemented with
the NSE/NCAR C=130 (ceiling 7km) operating out of Seat-
tlo, Flgure 1 shows the flights tracks of the DC-8 and C-
130 alreraft. These included extensive vertical: profiling on
all flights, The DC-8 conducted 10 science flights of about
9-h duration each, with large latitudinal coverage over the
Northienst Pacifio, The C-130 conduscted 12 science flights
of about 8-h duration each-off and over the US Nortliwest
Coast, Quasi-Lagrangion sumpling studies were performed
between the DC:8 and the C-130 to track the chemical evo-
lutlon of Asian pollution plumes (Latto.and Fuclberg, 2007).

Detalls of the ¢hemieal payload on both aireraftare given
by Singh et al. (in.preparation), We principally make use
here ofthe 1-min average measurements of ozone; CO, NO,
NO2, PAN, OH, and HO, Intercompatisons between the two
alvoxaft show excellent agreement for ozone, CO, and NOy,
but for PAN tha cortelation is poor and C<130 measurements
are 23% higher than DC-8-on average as discussed in Chen
etal. (2007),

Aditional in situ data for the INTEX-B period analyzed
in our atudy inelude ozonesonde observations at Trinidad
Head (Californla) and Richland (Washington) made during
the: IONS-06 collaborative field campaign (Thompson et al.,
2008; littpi//erow,gsfe.nasa.gov/intexb/icns06.litml), and sur-
face measurements-at Mount Bachelor :Qbservatory (MBO,
44.0° N, 121,7° W, 2,7 km altitude in Oregon) (Wolfe et al,,
2007; Reldmiller et al,, 2008):

2.2 Satellites

We use satellite. observations from OMI and TES aboard
Auta and AIRS aboard Aqua, Aura was launched in July
2004 Into a polar, sun-synchronous orbit with ascending
equater erossing around 1345 local time. The Ozone Mon-
ftoring: Instrument (OML) is a nadirscanning insttiment

18ingh, H. B,, Brune, W. H., Crawford, J. H., Jacob; D, 1., Rus-
gall, BB, et al: Chemistry and Transport of Pollution over the
Gulfof Mexleo and the Paclfier Spring 2006 INTEX:B Campaign
Overview ond Flrat Results, Atmos, Chem, Phys,, submitted, 2008,

www.atmos-chem-phys;net/8/61:17/2008/
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Flg. 1. Flight tracks of the NASA DC-8 (black) and NSF/NCAR C-
130 (ved) aircraft during the INTEX:B campalgn (17 April=15 May
2006), ‘The green stars show the loeations of the M. Baehelor Ob-
servatory (MBO):in Oregon (2.7 km altitude), Téinidad Head (TH)

in California, and Richland (RL)in Washington.

which - measures backscattered solar radiation over the-270-
500 nm wavelength range with a spectral resolution of 0,42~
0.63nm (Levelt ot al,, 2006). 1t has a spatial résolution
of 13x24km? at nadir and daily global coverage, We use
hiere near-real time (NRT) fropospheric NOz columns re-
trieved by KNMI/NASA (Boersma ot al,, 2007). This pred-
uct was successfully validated with DC-8 NOj vertisl pro-
files (Boersma et al., 2008).

The. Troposphieric Emission Spectrometer (TES) 18 a
Fourier transform IR emission spectrometer-with high spec-
ttal resolution (0.1 em™" apodized) and  wide spestral rango
(650-3050 om™*), cnabling reitieval of both tropospherie
ozone and CO in the nadir based on optimal estimation tech-
niques (Beer et al., 2006, Bowman et al,, 2006) Joint re-
tricval of ozone and CO enables TES to dingnose ozone
pollution influences throtigh O3-CO correlations (Zhang et
al,, 2006). During INTEX-B, TES alternated daily between
“global survey” and “step-and-stare” obscrvational modes
The standard products (“global surveys") consist of 16 daily
orbits across the North Pacific with retrlevals spaced 1.6°
along the orbit track, The “step-and-stare” observations have
denser nadir coverage along the orbit track over the Nerth
Pacific. Vertical profiles refrieved from TES provide 1-2 de-
grees of fréedom for signal (DOFS) for ozone in the tropo-
sphiere: corresponding to about 6km vertical resolution, snd
about 1 DOFS for CO weighted towards the middle trope-
sphere (Worden.etal,, 2004), We use V002 of TES datu, Val-
idation with: ozonesondes and INTEX-B. aitoraft data shows
that TES ozone profiles are biased high by 3~10 ppbv (Nassay

Atinos. Chent. Phys,, 8, 6117-6136, 2008
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et.al., 2008; Richards et al., 2008), TES CO measurements
‘are consistent with those from MOPITT (Luo ¢t al,, 2007a)
and within -:15% of the INTEX-B aircraft data (Luo et al.,
2007b). We filter out retrievals with poor sensitivity (diag-
onal term of the averaging kernel matrix at 681'hPa <0.01,
crvresponding to <0.25 DOFS (Luo et al., 2007a)). To en-
sure that our conclusions-are not affected by the variable a
priori used to tegularize the TES refrievals, we reprocess
the TES profiles using a fixed a priori following Zhang et
al, (2006).

The Atmospheric Infrared Sounder (AIRS) was launched
on the NASA Aqua satellite in May 2002, 1t is a cross-track
scanning prating spectrometer covering the 3.7 to 16 um
spectral range with 2378 channels (Aumann et al,, 2003),
AIRS has a spatial resolution of 45 km at nadirand a 1650 km
cross-track swath, enabling daily global coverage, CO re-
trievals ate obtained at 4.7 pm including for partly cloudy
scenes (MeMillan et al., 2005), 'We use version 4.2 of AIRS
CO retrievals (McMillan et al,, 2008). AIRS shows a posi-
tive bias of 15-20 ppbv relative to MOPITT over the oceans
(Watner et al., 2007), Here we use AIRS observations of CO
column qualitatively due to lack of well-defined averaging
keinels in-version 4.2.

2.3 Model description

We use the GEOS-Cliem global 3-D model of tropospheric
chemistry (v7-04-09; http://www.as.harvard.edu/chemistry/
trop/geosf) driven by GEQS-4 assimilated meteorological
observations from the NASA Global Modeling and Assim-
ilation Office (GMAO). The model is applied to a global
simulation of ozorne-NO-VOC-acrosol chemistry. General
descriptions of GEOS-Chem are given by Bey et al, (2001)
and Park et al, (2004), and previous applications to transpa-
cific ozone chemistry include studies by Fiore et al. (2002),
Jaeglé et al. (2003), Weiss-Penzias ot al. (2004), Bertschi et
4l. (2004), Goldstein et al. (2004), Hudman et al. (2004), and
Liang &t al, (2007).

Meteorological fields.in the GEOS-4 data have a temporal
resolution of 6 h (3 h for surface variables and mixing depths)
and a hotizontal resolution of 1 latitude by 1.:25° longitude,
with 55 levels in the vertical. We degrade the horizontal res-
olution to-2° latitude by 2.5° longitude for input to GEOS-
Chicin, The simulations are conducted for April-May 2006
at 2°%2.5° resolution, They are initialized on 1 April 2006
with GEOS-Chem fields generated by -an 8-month spin-up
simulation with 4° x5° resolution.

Zhang ct al?  (http//www.cgreruiowa.edw/EMISSION.
DATA .new/index.16,html) compiled a detailed anthro-
pogenic emission inventory for Asia (8°N-50°N, 80°E-
150°B) for the spring 2006 period of INTEX-B (hereafter

2Zhang, Q., Streets, D. G, He, K., et al.: A new inventory of
anthropogenic emissions in Asia for the year 2005/2006, Atmos.
Chem, Phys., manuscript in preparation, 2008,
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referred to as 82006). We use their emission estimates ex-
cept for NOy which we derive instead from OMI NO; data
as a better estimate (Sect. 3). For US anthropogenic emis-
sions we use the National Emission Inventory for 1999 (NEI
99) from the US Environmental Protection Agency (EPA)
(http://www.epa.gov/tin/chief/net/). For the rest of the world
we use atithropogenic emissions from the Global Emission
Inventory Activity (GEIA), scaled to 1998 on the basis of
national energy statistics as described by Bey et al, (2001).

Streets et al. (2003) previously reported an anthropogenic
emission inventory for Asia in 2000 (hereafter veferred to as
§2000), and we will use that inventory in a sensitivity simula-
tion to assess the impact of rising Asian emissions from 2000
to 2006. For the same Asian region, the S2006 inventory
is 41% liigher for CO, 45% higher for non-methane VOCs
(NMVOCs), and 65% higher for NOy, Our NOy source con-
strained by the OMI NO; observations is 2 times higher than
52000. Some of the change in the CO inventory in 2006
relative to S2000 reflects an underestimate in the original in-
ventory (Streets et al., 2006), in addition to emission growth.
The increase in NMVOCs reéflects emission growth and is
cousistent with Ohara et al. (2007). The increase in NOy
also mainly reflects emission growth, as will be discussed in
Sect, 3,

Biomass burning emissions are from a monthly clima-
tological inventory (Duncan et al., 2003). Fire emissions
over Southeast Asia in 2006 were not unusual compared
with previous years (van der Werf et al., 2006; hitp://essl.
ess.uci,edu/~jranders). Soil NO, emissions are computed
using a modified version of the algorithm by. Yienger and
Levy (1995) with canopy reduction factors described by
Wang et al. (1998a). Emissions of NOy from lightning are
linked to deep convection following the parameterization of
Price and Rind (1992) with vertical profiles taken from Pick-
ering et al. (1998). Following the suggestions by Martin et
al. (2006) and Hudman et al. (2007) and evidence from ob-
servations (Huntrieser et al,, 2006), we use a NOy yield per
flash of 125 moles in the tropics and 500 moles at northern
mid-latitudes (north of 30° N). The resulting lightning source
is 6 TgNa~! globally including 1.6 TgNa~! north of 30° N
Transport of ozone from the stratosphere is simulated using
the “Synoz” boundary condition of McLinden et al. (2000),
which imposes a global cross-tropopause ozone flux of ap-
proximatecly 495 Tg ozone a~! transported downward by the
model.

We present results. from three full-chemistry simulations:
(1) the standard simulation for 2006 as described above; (2) a
sensitivity simulation without:Asian (8°-50° N, 80°-150° E)
anthropogenic: emissions (fossil fuel+biofuel), which allows
us to derive Asian pollution enhancements in the standard
simulation by difference; and (3) a sensitivity simulation for
2000 using 82000 Asian emissions from Streets et al. (2003)
to. derive. the effect of 2000-2006 regional growth in emis-
sions. We also conduct single-tracer simulations of odd oxy-
gen (O =03+NO2H2NO3+H3N 05 +HNO3+HNO4+

www.atmos-chem-phys.net/8/6117/2008/
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GEOS-Chem with 2000 eriissions  GEOS:Chern with doubiled emisoions
(mean; 1.31) ;

10 ' motacfem®

Fig, 2, Meon tropospheric NO2 columns. from OMI and the GEOS-Chem model in April-May 2006 over esstern Asin, The OMI data
(ieft panel) have been mapped on the 2° x2.,5° GEOS-Chem grid. GEOS-Chem model results are shown using 2000 anthropegenie NO
eimiisslons from Streets ot al. (2003) (central panel) and a doubling of thiese emissions to répresesit 2006 conditions (vight panel). The numbera

in parenthesss are the mean column values over eastern Asia,

peroxyacyInitrates), using archived 3-D fields of daily pro-
duction ratea and loss frequencies fram the above simula-
tlons. This ozone tracer technique hag been applied in a num-
‘ber of model studies to track the transport and fate of azone
produced in different regions (Wang et al., 1998b; Li et al,
2002;- Sudo and Akimoto, 2007). We use it here to assess
the relatlve confributions to {ranspacific ozone pollution from
ozone-produced. in the Asian boundary layer versus formed
downwind of Asis following NO; and PAN export.

3 Constraints on Asian anthropogenic NOy emissions

The bottom=~up combustion inventories for developing coun-
trien such as China are subject to large etrors in available
energy statistios and emission factors (Streets et al,, 2003).
We uge here OMI tropospheric NO; columns to provide
top-down eonstraliits on surface NOy emissions for April—
May 2006 over.eastern Asia (20=50°N, 100~150° E) includ-
ing Bast China, Japan, end Korea. TFollowing Martin et
al, (2003); we determine local top-down surface NOy emis-
stons. from the-OMI NO; columns by applying the GEOS-
Chem relatfonship between NO; columns and local emis-
glons derived from the bottom-up inventory and sampled
olose to the satellite overpass time. We adopt the improve-
ment from Wang et al: 2007) by accounting for contributions
from extertal and non-surfiee sources, including in particu-
lar Hghtning and biomass burning in Southeast-Asia.. Con-
ttlbutions from these sourees to tropospheric NQy columns
over eastern Asia were dentified by GEOS-Chem sensitivity
gimulations with anthropogenic emissions over castern Asia
shut off, They typically represent 10-20%.

TFigure 2 shows the NO2 tropospheric columns observed by
OMI (left panel) vs. simulated by GEOS-Chem using S2000.
anthropogente NOx emissions fiom Streets et al, (2003) (cen-
tral panel) at the satellite overpass time. The model is
40%. too low. We can mateh the OMI data by doubling

wiwwiatmos-chem-phys.net/8/6117/2008/

the §2000 anthropogenic NOx emissions over eastern Asia
(including China, Japan, and Koren), as shown in the viglit
panel. This yields a high spatial correlation with OMI ob-
servations (=092, n=209 on the 2°%2:5° grid) as well as
negligible bias (slope of 0,94 for the reduced-major-axls re-
gression line), Walker et al.® obtained a similar constraint
on Asian NOy cmissions using SCTAMACHY satellite NO2
data,

Our factorof 2 correction to the 82000 inventory lHkely re-
flects actual 2000-2006 emission growth in China and under=
estimation of bottom-up estimates for Japan and Korea, The
$2006 bottom-up inventory (Zhang et al., in preparation) for
the INTEX-B period shows a 98% growth of NOy anthro-
pogenic emissions from China relative to 82000, in close
agréerent with our results, Wang et al, (2007) previously
found the 852000 inventory to be 15% lower than contoms
porary top-down constraints from the GOME NO; satollite
instrument. Tt thus appeats that Cliineso anthropogenic NOy
emissions have indeed doubled from 2000 to 2006. Previous
trend -andlyses of Chinese anthropogenic NOx emissions for
the 1996-2004 period indicated an accelerating growth rate,
with total growth for that period of 61% in the bottom-up in-
ventory (Zhang et al., 2007) and 95% from satellite data (van
der A et al., 2006),

The top-down constraints from OMI also. 1mply fastor of
2 increases in Japan and South Korean emissions relative to
the S2000 inventory. However, 52006 roport no significant
2000-2006 emission changes in these regions, Bottom-up
and top-down analyses for carlier periods also show little
trend (Richter et al,, 2005; Ohara et al,, 2007). The corrée-
tion to the S2000 inventory in Japan and Kores nceded to
match the OMI data in Fig, 2 thus appears to reflect an un=
derestimate in the inventory rather than an actual 20002006
emission trend. Jaeglé et al. (2005) and Wang et al, (2007)

Iwalker, T. W,, Martin, R. V., van Donkelaar, A,, ot 6l.; Trans-
Pacific transport of reactive nifrogen and: ozone during spring,
manuscript in preparation, 2008:
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Fig. 3. Moan vertical profiles of CO, NO, PAN, and O3 concentrations over the Northeast Pacific during INTEX-B (April=Mny 2006),
Observations (black) from the DC-8 (top) and C-130 (botiom) aitcraft are compared to GEOS-Chem model rosults with 2006 Aslan emiaslons
(red solld) and 2000 Aslan emissions (red dash). Horizontal bars are standard deviations, Here and in subsequent figurey, the observations
fiave been filtered to remove urban plumes, hiomass burning plumes, and stratospheric ait as deseribed n the text, Model results are sampled
along the flight tracks at the time of the flights, and observations are averaged over the model grid.

previeusly Indicuted-a 30%-50% underestiniate in the S2000
Inventory relative to GOME NO; observations over Japan.
Tn what follows, we will interpret the doubling of anthro-
pogenic NOy emissions in eastern Asia relative to 82000
a8 tepresenting the netual 20002006 regional growth: rate
in emisalons. This interpretation overestimates the actual
growth by ubout 30% due to the apparent underestimation
in 82000 for Japan and Korea, In any case, our standard
simulation for 2006 includes our best estimate of East Asian
emisslons for that year constrained by the OMI data.

4 Menan vertieal profiles

We compare in Fig. 3 thoe observed and simulated mean ver-
tioal distributions of CO, NOy, PAN, and ozone concentra-
tlens for the ensemble of DC-8 and C-130 flights in Fig. 1,
Model resulta are sampled along the flight tracks at the time
of flights. Observatlons are gridded to model resolution. The
comparison excludes urban plumes observed during take-
off and landing as disgnosed by NQ2>500pptv and ‘alti-
tude <3 km; blomass burning plumes as diagnosed by HCN
500 ppty or CH3CN 225 pptv; and stratospherie air as di-
agnosed by 02/C0 1,25 molmol™). These filters exclude
1%, 4% (utban plumes); 5%, 4% (biomass burning plumes);

Atmos, Chem, Phys,, 8, 6117-6136, 2008

and"7%, 0% (stratospheric air)-of the data for the DC-8 and
C-130, respectively. The stratospheric filter-does net exclude
stratospheric influence within the troposphere, as mixing of
stratospheric and tropospheric alr masses causes the 03/CO
ratio to drop rapidly below the filter threshold,

CO profiles show little mean vertical structure, Modeled
CO is 15% lower than observations, consistent with an OH
overestimate in the model, Figure 4 shows the mean simu-
lated vs. ohserved vertical distributions-of OH and HO3 con-
centrations. The model is too high for OH by 27% on aver=
age in the DC-8 data and by a comparable factor in the C-130
data. In contrast there is no significant bias for HOy, Ren ot
al, (2007) found that the OH and HO;. observations from the
DC-8 aircraftare within 15% of caloulations from the NASA
Langley photochemical box model (Olson et al. 2006) con-
strained with the ensemble of concurrent airoraft obaerva~
tions, To investigate this discrepancy, we conducted a tost
where we constrained the NASA Langley box model with
GEOS-Chem output rather than observations from the DC-8
aircraft. ‘This ¢losely reproduced the OH and HO3 eoncentia-
tions simulated by GEOS-Chem, indicating that differences
in ghemical mechanisms are not responsible for the discrep-
ancy. Tt appears instead that the discrepancy is mostly caused
by an overestimate of watey vapor in the GEOS-4 duta set und

www.atmos-chem-phys.net/8/6117/2008/
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upper tropospheric NO concentrations in GBOS-Chem rela-
tiva-te the ebservations.

Observations of NO and NOg from both the DC-8 and the
€-130 are In photostationary state. and the absolute. values
are In agreement with the GEOS-Chem simulation at low al-
titude (below 6 km for the DC-8 and below 4.km for the C-
130, At higher altitudes the NO/NO; ratio fromi both plat-
forms |8 Inconsistent with the assumption of photostationary
gtate, Differences for the C-130 data are within the uncer-
tainty in the instrument zero offsets (<5 pptv), Fox the DC-8
the differances become larger than that can be explained as
uncertainties in'the messuroments above 8 km, The GEOS-
Chein model overestimates NO mensurements from DC-8 by
50%.at 10km (60 vs, 40 ppty) and underestimates NOy at
the ame altitude by a factor of 2 (20 vs. 40pptv). By co-
ineldence NO; is in ugreement. If we attributo all of the er-
ror to one ot the other measurement; then the GEOS-Chem
model predicts either 50% too much NOy or 100% too little
at 10Jem, Here and in what follows we use total NOy as the
eompatigon metrie,

Comparisons of simulated and observed NOy and PAN in
Flg, 3 show a low bias in the model with 2000 Asian cmis-
stons, which largely disappears in the model with 2006 Asian
giniesions, The doubling of anthropogenic NOy emissions
over eastern Asia from 2000 to 2006 increases NOy concen-
trations by 3 pptv over the Northeast Pacific in the model,
The PAN slmulntion with 2006 Asian emissions shows a
14% overestimate relative to the DC-8 observations while a
6% underestlmate relative to C-130. observations, consistent
with the 23% systematic difference in PAN measurements
between the two aireraft (Chen et al,, 2007). The 2000-2006
tlge in Asian anthropogenic emissions increases the mean
gimitlated PAN concentrations by 26 pptv (21%). Jaffe et
al: (2007) compared the INTEX-B C-130 airoraft observa-
Honsg of NOx and PAN o their previous observations from
the PHOBBA niroraft compaign in 1999 over the Northwest
Coast of the United'States, and found no significant change
1n NOy but 0 22% mean fnorease in PAN,

Maodel results for ozone in Fig, 3 show & 3 ppbv mean
Increase from the 20002006 rise in Asian antliropogenic
emisslons. The model result with 2006 Asian emissions is
eonsistent with DC-8 measurements. Comparison with C-
130 measurements shows. a negative bias of Sppbv. The
DC-8 alreraft covered.a large region over the Northeast Pa-
elfie, while the C-130 flew over the North American West
Const (Flg. 1), where stratospheric influence on ozone is
particularly strong in- spring (Cooper et al., 2004). Hud-
man et al, (2004) previously found that: GEOS-Chem un-
derestimated observed ozone concentrations from the ITCT
2K2 campaign over California-in April-May 2002 by up to
10 ppbv due to its failure to reproduce high-ozone layers of
slratospherle origin,

We fusther compated model results with sonde measure-
ments flom IONS-06, Figwe 5 shows the comparison
withithe mean ozonesonde profiles at Trinidad Head on the

wwwatmos-chem-phys.net/8/6117/2008/
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Fig. 4. Same as Fig. 3 but for OH and HO,, Only medel results
with 2006 Asian emissions ate shown.

northern California coast (41°N, 124° W).and Richlaud in
Washington (46°N, 119° W) during the INTEX-B petlod,
The model reproduces the mean obsetved ozone profile at
Trinidad Head but is 5 ppby too low at 2-5km. At Rieh-
1and whiere stratospheric influences are.more pronounced, the
model is 10 ppby too low in the fiee troposphere, Similar
GEOS-Chem underestimate of the ozonesonde observations
at Trinidad Head was reported by Hudman et al. (2004) for
the ITCT-2K2. aitcraft campaign,

5 Satellite and aiveraft observations of transpacifie
tramnsport

5.1 Transpacific transport as seen from satellites

Figure 6 shows AIRS (CO) and TES (CO, ozone) time ge:
ries for the INTEX-B period over the Northwest and North-
east Pacific.  AIRS has daily global coverage while TES Is
much sparser. AIRS observations of CO column over the
Northwest Pacific show Asian outflow events every 3-6 days,
These outflow: events are associated with the passage of cold
fronts across the Asian Pacific Rim (Liu et al,, 2003; Heald

Atmos, Chem, Phys,, 8, 61176136, 2008
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Flg, 8, Mean ozone concentration profiles over Trinidad Head, California (41°N, 124° W) and Richland, Washington (46° N, 119° W)
during the INTEX-B campaign. The black lines show the means and standard deviations of ozonesonde data for the perlod of 17 April=1§
May 2006 (13 sondes at Trinidad Head and 24 at Ricliland). The red lines show the corresponding means and standard devidtions of model
results with 2006 Asian emissions,
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show the time serles of TES observations-after filtering out stratospheric influence as described in the text.
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Fig. 7. €O columns from AIRS, TES and the GEOS-Chem model during the 5-9 May transpacific Asian pollution event obsetved by the

INTEX-B alrorait. GBOS-Chem values.are sampled along the TES orb

it teacks and with TES averaging kernels (AK) applied, The orlginel

TES data have been reprocessed to remove the effect of variable a priori and averaged on the model resolution. (GBOS-Chem eolumns
sampled at 12:00 UT without averaging kernels applied are also shown; the black line in the lower panel shows the INTEX-B DC-8 flight

track on 9 May.

et.al,, 2003), CO shows a decreasing trend from April to
May over the Northeast Pacific due to the seasonal decline of
blemass bumning in Southeast Asia (Duncan et al., 2003) and
the seasonal Inerease of OH concentrations, The CO column
data over the Northeast Pacific Identify two major events of
transpaeific transpott of Asian pollution duting the INTEX-
B petlod, The two events were also seen by in situ observa-
tions, Bvent 1 was observed from the C-130 on 1 May (Bar-
letta et al,, 2007), and was also observed at the MBO site as
ghown In Sest. 7.1, Bvent 2 was-observed from the DC-8 on
9 May as diseussed in Sect, 5.2, and arrived at MBO around
10 May,

TES observations of CO column show similar ternporal
varlation a8 AIRS (1=0.75 for both regions) but with larger
vatlability. Flgute 6 also shows TES observations of ozone
coneenirations retrleved at 680 hPa (corresponding to a broad
mid-troposphere weighting function), The time series of TES
€O and ozone observations are not always correlated. There
are some petiods with high ozone but low CO, such as 2 May
over the Northwest Pacific and 14 May over the Northeast
Paglfie. Stratospherie intrusions occur ubiquitously through-
out the midlaltudes (Cooper et al., 2004), and mixing Asian

wwwiatmos-chemsphys.net/8/6117/2008/

" polfution plumes with stratdspheric air masses obfuscates

the 03-CO correlations (Nowak et al,, 2004), After fil-
tering out TES observations with stratospheric influence as
diagnosed by TES 03/CO at 680 1hPa 0.6 mol mol™! (a
stricter criterion than used for airoraft menasurements due
to the broad weighting functions in satellitc retrievals), we
find strong positive correlations (r=0.5, significant with 95%
confidence) between the time series of TES CO and ozone
observations for both regions. These correlations, likely
driven by contrasts of Asian outflow and clean tropleal ma-
tinie air masses, suggest a combined export of ozone and CO
pollution from the Asian continent. We examine this cor-
relation in more detail below for a well-defined transpacific
plume.

5.2 Transpacific transport event on 5-9 May

The transpacific event of 5-9 May was observed by both
satellites and aircraft. Figure 7 shows daily AIRS end TES
observations of CO for that period along with the correspond=
ing GEOS-Chem simulation. AIRS with its high coverage
illustrates the progression of the event and the GEOS-Chem

Atmos. Chem, Phys,, 8, 6117-6136, 2008
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Fly, 8, (left) THS observations of ozone concentrations at 680hPa on 6 and 8 May. The original TES data have been reprocensed to romove
the effect of varlable o priorl and averaged on the 2°x2.5> GEQS-Chem model grid, (centef) Simulated Asian ozone enhancement on 6 and

§ May at 12:00 UTC, 18 determined by difference between the standard GEOS-Chein simulation and a simulation with Asian anthropegenie
aouroes shut off, The black crosses show the Jocations of the TES observations of the Asian pollution plume used in the 03-CO analysis,
(tght) 03-CO relationships at 680 hiPa for the plume shown in the centeal panel, The TES observations (black) are gormpared fo mode! results
fom the standard simulation (red) and a sensitivity simulation with Asian emissions shut off (blue) sampled along the TES orbit tracks and
with ‘TES averaging kesnels applied. Correlation coefficients (r) and slopes of the reduced-major-axis regression ines (03/dCO, mol mol=")

pre shown liset,

simulation Is highly consistent. The Asian pollution plume is
lifted with a southenstward moving front and rapidly trans-
potted In westerly winds at 30°~50° N across the Pacific. It

aplits Into two alr streams when crossing the Pacific high

pregaure system, The northern branch travels to Alaska in
a elreulation around the Aleutian Low, while the southern
branch flows around the Pacific High and impacts the west
goast of North America on 9 May.

Alse shown in Fig. 7 are the GEOS-Chem model fields
gampled along the TES orbit tracks and smoothed with TES
averaging kernels, The model reproduces the variability ob-
gerved by TES (1=0.80), TES observations are relatively
spatse but are qualitatively consistent with AIRS. Figure 8
shows the corresponding TES observations for ozone and
the GEOS-Chem simulation of the Asian ozone pollution en-
haneement (determined by difference between the standard
gimulation and a sensitivity simulation with Asian anthro-
pogenie sources shut off), Model results display a band of
Aslan ozone pollution accompanying CO and moving cast-
ward within 30°-50° N, consistent with the pattern observed
by TES,

Flgure 8 (right panet) shows the correlations of TES ozone
and CO measurements for the pollution plume at 680 hPa.
Ozone and CO are positively cotrelated both in the TES ob-
gervations and the model, The corresponding observed en-
haneement tatio d03/dC0=0.14::0,05molmol " (standard
deviation ealeulated by the bootstrap method, Venables and.
Ripley, 1999) on 6 May is smaller than summertime ob-

Atimes, Chem, Phys., 8, 6117-6136, 2008

servations of 0.2-0.5 molmol™! at surface sites in eustern
North America (Parrish et al, 1993; Chin et al, 1994),
and 0.6molmol~! observed in Asian outflow by TES in
July (Zhang et al, 2006). The smaller enhancenent ratle
is likely due to low photochemical activity in the spring-
time (Pierce et al, 2003). The larger d03/dCO ratio of
0:394:0.12 mol mol™! observed on 8 May (with 90% eon-
fidence from t-test) is consistent with the typical ratios of
0.2-0.5molmol™! in industrial or biomass burning plumes
from aircraft measurements over the Northeast Pacific In the
spring (Price et al,, 2004), and suggests continuous ozone
production in the lower troposphere during transport across
the Pacific. We see-from Ttig. 8 that the model reproduces
the observed 03-CO correlations at loast qualitatively and
these cotrelations disappoar in 4 sensitivity simulation with-
out Asian anthropogenic emissions, indieating that they are
driven by Asian ozone pollution.

Figure 9 shows the aircraft vertical profiles sampling the
pollution plume on the 9 May flight out of Anchorage
(flight track shown in Fig, 7). 'The northern branch sam-
pled at 53°N, 150° W, and 3.5-7 km altitude shows CO up
to 182ppbyv and PAN up to 690pptv. Ozone mixing ra-
tios are about 65 ppbv, not-significantly higher than the lo~
cal backgiound, The southern branch sampled at 42°N,
138° W, and 2.5-5.5 km altitude shows CO up to 206ppbv
and ozone up to 85ppbv; PAN mixing raties (125 pptv)
are much lower than in the northern branch, The differ-
ence in ozone enhancements reflects the effect of subsidence

www.atmos-chem-phys.net/8/6117/2008/
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Flg, 10, Kinematlo 7-day backward (open circles) and 3-day forward (solid circles) trdjectories for the enhanced CO Inyers of Asinn poliutien
(CO= 125 ppbv and 2-7 km) observed in the INTEX-B DC-8 flight on May 9 as shown in Fig, 9. The flight track is shown In gray and the
blaele erosses show the locations of enhanced CO layers, corresponding to the northern and southern branches of Fig, 9. ‘The trajectorles
were construsted using reanalysis data from the National Centers for Environmental Prediction (Fuclberg ot al,, 2007),
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Ion;s. at 800 hPa
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Flg. 11, Mean gross ozone (odd oxygen) production rate at 800 hPa from anthropogenic Asian omissions during the INTEX-B peried (17
Aprii=15 May 2006). The Asian enhancement of ozone production is determined by the difference of gross ozone production rates batween
the standard simulation and a sensitivity simulation with Asian anthropogenic emissions shut off. ‘The contours and veotors reprosent the
meun GHOS-4 sea level pressures and 800 hPa wind fields for the period.
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Fig, 12, Mean GEOS-Chem simulated Asian pollution enhancements of ozone, CO, NOx, and PAN at 800 hPa for the INTEX-B perlod
(17 Aptli=15 May 2006). ‘The Asian pollution enhancements are determined by difference between the standard simulation and o sensitivity
simulation with Asian anthropogenic emissions shut off,
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medel Aslan enhancements, Vertical bars are standard deviations
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driving PAN decomposition to NOyx and hence ozone pro-
duetion (Kotohenruther et al,, 2001; Heald et al,, 2003; Hess
and Vukicevie, 2003; Hudmen et al, 2004; Nowak et al,
2004),

The ozone production in the southern branch is relevant
for direot impast on the United States, Figure 10 shows
kinematic backward and forward trajectories based on re-
anatysis data from National Centers for Environmental Pre-
dietion (Fuelberg et-al,, 2007) for the enhanced CO layers
of Aslan pollution (CO >125ppbv and 2-7km) shown. in
Flg. 9. The 9 May flight measured distinct northern -and
gouthern branches of the plumes, but the backward trajecto-
tles in Flg. 10 demonstrate their common origin. The 3-day
forward frajectorles from the aircraft tracks show the differ-
ent futes of the two pollution branches. The northern branch
remains at high altitude over the Gulf of Alaska, while the

gouthern branch subsides to impact the United States. How-

evet, a large patt of that southern branch cycles around the
Paclfie High and avolds contact with North America.
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Fig. 14, Time series of 3-houtly averaged CO (top) and ozene (cen-
ter) concenteations at MBO during the INTEX-B perled, Model
results (red) ate compared to observations (black), The blue lines
show the Asian anthropogenic gnhancemonts In the model a8 de-
termined by the difference between the standard simulation and a
sensitivity simulation with Asian anthropogenic emissions shut off,
Black-arrows show Asian CO pollution maxima as indicated by the
model, The bottom panel shows the simulated incrense of ozene
concentrations at MBO due to the rise of Asian anthropogante einis-
sions from 2000 to 2006,

6 Mean transpacific transport of Asinn ozone and it
precursors

We now generalize from the case study of 6-9 May to
the mean transpacific Asian pollution influence during the
INTEX-B period of 17 April-15 May, 2006, Figure 11
shows the mean enhancements of gross ezone production
rates at 800.liPa due to Asian anthropogenic emissions, as de-
tetinined by-difference between the. standard simulation and
the sensitivity simulation with Asian anthropogenic emis-
sions shut off. GEOS-Chem ozone production rates in the
standard sinwlation are consistent with those from box mod-
els constrained by aircraft measurements over the Northwest
Pacific (Auvray et al,, 2007). Transpacific transpert of ozone
pollution mostly takes place in the free tropospliere (Priee et
al., 2004), and we show 800hPa in Fig. 11 as most relevant
for North American air quality,. We see fast production of
Asian ozone pollution (>5 ppbvd~") over the Aslan conti-
nent where NOy concentrations are high, but also sustained
production (> 1 ppbvd—') across the Paclfic at 25° N-40° N
and a secondary maximum off the coast of California, Hud-
man et al, (2004} previousty found that the ozene production
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¥lg, 18, Mean simulated US surface ozone enhancements from
Aslan anthropogenic emissions during the INTEX-B time period
(17 Aprit=15 May 2006), Total Asian ozone enhancements (top
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the Asian and Paclfic lower troposphere (surface — 700 hPa), and in
the middie/upper troposphere (700 hPa— tropopause), Note that the
top left panel hina n different scale then the others.

effielency la particulacly high over the subsiding East Pacific
beeause of the strong radiation and low humidity, This com-
blned with the release of NOx from PAN decompaosition pro-
motes relatively rapid ozone production (> 1.5 ppby d ™).

Mean 800hPa winds and sea level pressures for the
INTEX-B period are also shown in Fig, 11, The Pacific High
and Aleutian Low are prominent features and drive the west-
erly transport across the central and eastern Pacific (Liang et
al,, 2005), We see from Fig. 11 that splitting of Asian plumes
aver the Northeast Pacific is an expected feature of the mean
elroulation: the northern branch circulates around the Alen-
tian Lew, while the southern branch circulates around the Pa-
elfle High and affects the western United States, As shown in
Plg. 11, the high ozone productionrate is limited to the soutli-
ern braneh, Most of the air in that southern branch actually
sklits. the US, as previously discussed in the May 5-9 case,
It I8 Instend entrained in the easterly tropical circulation to
beeame the tropleal “tiver of pollution” flowing back to the
wastern equatorial Pacific in the marine boundary layer, as
sbserved In the PEM-Tropies B aircraft canipaign (Staudt et
al,, 2001; Mattin ef ul,, 2003).
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Figure 12 shows the mean simulated Asian pollution en-
hancements of CO, PAN, ozone, and NOy at 800 hPa for the
INTEX-B period, They show the same pattern of Asian out-
flow but then become latitudinally separated during transport
across the Pacific. CO and PAN have little produetion ever
the Pacific; their transport is. mainly north of 358° N, By eon-
trast, Asian ozone and NQ, are more enhanced at 25° N=
40° N, corresponding to the southerm. branch of transpaclfie
transport in Fig, 11 which provides a sustained source. The
secondary maxima of Asian NOy and ozone over the aub-
tropical Pacific match the secondary maxima of Asian ozone
production in Fig. 11,

The INTEX-B aitoraft observations provide evidence for
this latitudinal separatioss between Asian enrichments of
NOyx and PAN, Figure 13 shows the mean observed and
simulated latitudinal gradionts of NOy and PAN concentra=
tions over the Northeast Pacific at 1.5-5km altitude. NOy
concentrations decronss with increasing latitude while PAN
increases with increasing latitude, with a stop funetion at
40° N. The patterns ave similar in the model and {n the ob-
servations, confirming the mechanism of ozone preduction
driven by PAN decomposition over the subtropical Pacific,

7 Twpact of Asian pollution on North American surface
ozone

7.1 Measurements at Mt. Bachelor Observatory

The Mt. Bachelor Observatory, a mountain site in eentral
Oregon, is particularly sensitive to Asian influences due to
its exposure to the free troposphere (Jaffe et al,, 2008; Welss-
Penzias ot al., 2006), We use measurements at MBO to test
model estitates of Asian influence in North Amerlean buck-
ground air, Figure 14 shows the 3-hourly abserved and med-
eled time seri¢s of CO and ozone at MBO during the INTEX-
B period. The model is unbiased for ozone and bissed low
by 20 ppbv for CO, as discussed previcusly in the centoxt
of the aircraft data. The synoptic-scale virlubility {s well
captured, particularly for ozone. The model prediets larger
Asian pollution ‘ozone enhancements in May than Apil due
to increasing photochemical activity. May Is olimatelogi-
cally the month of peak Asian influence on US ezene (Ja-
cob et al.,, 1999). The day-to-day temporal variubility of
Asian ozone pollution simulated by the model is small, eon-
sistent with. the previous analyses of Fiore et al. (2002) and
Goldstein et al, (2004). Asian ozone pollution in the model
mostly appears as a background enhancement rather than as
discrete plumes. PAN concentrations nieasured at MBO dur-
ing INTBX-B have a-median of 270 pptv (Wolfe et al,, 2007),
compared to 190 pptv in GEOS-Chem, with fair agreementin
temporal pattetns between model and observations (r=0,56).

Asian plumes with enhanced €O and ozone concentrations
have been previously observed at MBO (Jaffe ot al,, 2005;
Weiss-Penzias et al., 2007), The INTEX-B petiod s unusual
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in that no strong plumes of CO were detected at MBO (Rei-
dmiller et al., 2008), Arrows in Fig, 14 show Asian CO pol-
lution maxima as indicated by the model and discussed fur-
ther by Wolfe et al. (2007). Detecting these Asian pollution
cvents in the CO obscrvations is a challenge because of other,
larger factors of variabilify. The observed CO enhancement
on 1 May could be of Asian origin. The ozone observations
show a coincident sharp increase but the model implics that
only 4 small part of that incréase is due to Asian emissions,
The mean observed ozone concentration at MBO during
INTEX-B is 54210 ppbv (mean-tstandard deviation), com-
pared with 5349 ppby in the model. It is lower than the mean
ozone observed at Trinidad Head and Richland at 2.7 km dur-
ing INTEX-B (60 ppbv and 62 ppby, respectively as shown in
Fig. 5), because stratospheric influence at MBO is weaker
(Weiss-Penzias ct al., 2006). Asian anthropogenic emis-
sions in the model increase ozone concentrations at MBO by
9.242.5 ppby for the INTEX-B time period. Asian potlution
is thus an important component of the mode! ozone back-
ground at MBO; without this contribution the model would
greatly underestimate the measurements. In a previous study
with the GIEOS-Chem model, Fludman et al. (2004) found
a mean Asian pollution enhancement of 7 ppbv ozone at a
California mountain site in May 2002, The difference can be
explained by rising Asian emissions. As shown in the bottom
panel of Fig. 14, rising Asian emissions from 2000 to 2006
have increased ozone at MBO by 3 ppbv on average in April-
May and up to Sppbv in events, although a small part of
that increase could reflect the underestimate of emissions for
Japan and Korea in the baseline $2000 inventory for 2000.

7.2 Impact on surface ozone air quality

Figure 15 (top left panel) shows the mean simulated sur-
face ozone enhancement from Asian anthropogenic emis-
sions over North America for the INTEX-B period. Asian
ozone cithancements are 5-7 ppbv in the west and 2—5 ppbv
in the east. The highest values are in the mountainous west.

To interpret these results we condudted two tagged Oy sim-
ulations, otie using archived 3-D fields of daily production
ratés and loss frequencies from the standard simulation, and
the other using those from the sensitivity simulation with
Asian anthropogenic emissions shut off. The difference of
the two simulations diagnoses the contributions from differ-
ent production regiotis as sources of transpacific Asian ozone
pollution. We thus distinguish in Fig. 15 between production
in the Asian lower troposphere (up to 700 hPa), production
in the Pacific lower troposphere (up to 700 hPa), and produc-
tion in the middle and upper troposphére (above 700hPa).
Summation of these three tagged tracers gives the total Asian
pellution ozone enhancement in the top left panel.

As shown in Fig, 15, most of the Asian ozone enhance-
ment in western Canada is from transport of ozone pro-
duced in the Asian lower troposphere. The western United
States and northern Mexico are more influenced by the south-
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ern branch of transpacific transport, where continuous ozone.
production from exported Asian NOy. and PAN is compara-
ble in magnitude to direct transport from the Asian boundary
layer. Ozone production in the middle and upper troposphere
is more important for US influence than in the-subsiding air
masses below 700 hPa (Pacific lower ttoposphere), as ozone
produced in the latter region tends to rerain over the: sub-
tropical Pacific rather than affect North America (Fig. 10 and
15).

Previous studics repotted that pollution transpoited from
Asia may contribute 3—5 ppbv to the ozone background over
the western United States in the spring (Berntsen et al., 1999;
Yienger et al,, 2000). We find in the model that the 2000
2006 rise of Asian anthropogenic cmissions: increased sur=
face ozone by 1-2ppbv in the western United States (the
larger impact of 3 ppbv at MBO is on account of its sleva-
tion). We conducted further sensitivity simulations to sepa-
rate the contiibutions froni the 100% tise in Asian NOy emis-
sions and the 45% rise in Asian NMVOC emissions, as the
latter would affect PAN formation, and find that the ozone
enhancement is most seiisitive to NOy emissions. The rise in
Asian NMVOC emissions alone increases ozone by at most
0.4 ppbv anywhete in North America.

. 8 Conclusions

We used an ensemble of aircraft, satellite, sonde, aind sur-
face observations during the INTEX-B two-aircraft cam-
paign over the Northeast Pacific (April-May 2006) to better
understand and quantify the transpacific transport of Asian
pollution and its effect on North American ozone air-quality,
We interpreted this ensemble of obsetvations with a global
3-D madel of tropospheric chemistry (GEOS-Chem). We
addressed the impact of the recent rise in Asian emissions
(2000-2006) on surface ozone air quality in North America.

Tropospheric. NO; column observations from the OMI
satellite instrument provide top-down constraints on anthiro-
pogeii¢c NOy eniissions inn easterit Asia (including China,
Japan, and Korea) in April-May 2006. We find a factor of
2 increase compared with the anthropogenic NOj emission
inventory from Streets et al. (2003) for the year 2000, This
factor of 2 increase reflects.a combination of 2000-2006. ac-
tual growth of Asian NOy emissions (China) and .an underes--
timate in the prior inventory (Korea, Japan). China aceounted
for over 80% of castern Asian anthropogenic. NOy emissions.
as of 2006.

The model provides a good simulation of the ozone,
NOy, and PAN mean vertical profiles: observed from the
two INTEX-B aircraft, The simulation is only weakly sen-
sitive to the 2000-2006 rise of Asian cmissions in tenms
of comparison to observations; ozone increases by 3ppbv
on average. Simulated ozone over the west -¢aast of
North America is 5ppb lower than observed from aircraft.
and ozonesondes during INTEX-B, which we atttibute to
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preferential stratospheric inflow over this region not resolved
by the model. The model is 15% too low for CO compared
to the aireraft observations, which we attvibute tentatively to
excessive OH (model values for OH are 27% higher than ob-
served in INTEX-B),

Satellite observations of CO columns from AIRS and TES
indicate at least two major events of transpacific Asian pol-
lution during the INTEX-B time period. Tropospheric ozone
observations from TES do not show a simple correlation
with CO, reflecting at least in part the complicating effect
of stratosphetic influence. Filtering out this stratospheric in-
fluence reveals strong positive correlations between TES CO
and ozone over the Noyth Pacific. These correlations, likely
driven by contrasts of Asian outflow-and clean tropical ma-
rine air masses, indicate collocated export of ozone and CO
pollution from the Asian continent.

We examined in detail a major transpacific Asian pollution
plume sampled by the INTEX-B aireraft on 9 May. Measure-
ments from AIRS and TES tracked the transpacific progres-
siofi-of this event. TES observed positive O3-CO correlations
in the-pollution plume, offering some evidence for net ozone

production. during transport across the Pacific. The plume

split into northern and southern branches over the Northeast
Pacific. Elevated ozone was observed by aircraft in the sub-
siding southern branch and was consistent with production
from PAN decomposition.

Generalization to the mean transpacific Asian pollution in-
fluerice during the INTEX-B period showed that this splitting

-of pollution plumes into two branches over the Northeast Pa-

cific is: an expected climatological feature driven by the cir-
culations around the Pacific High and the Aleutian Low. The
northern branch circulates around the Aleutian Low and re-
mains at highaltitude. The southern branch subsides around
the Pacific Fligh to affect the United States and northern Mex-
ico, although-most of that air skirts.North America and is
entrained in the easterly tropical circulation toward the west-
et equatorial Pacific, Model results show high ozone pro-
duction rates from Asian pollution in the southern branch,
including a secondary maximum off the coast of California
driven by subsidence. Concentrations of NOy and PAN mea-
sured from the aircraft show opposite latitudinal gradients in
the lower troposphers, consistent with the model, and con-
firming the: mechanism of PAN decomposition to NOy as a
driver for transpacific ozone production.

We tested the model simulation of Asian pollution influ-
ences over North America with measurements at Mt. Bache-
lor Observatory (MBO) in central Oregon (2.7 km altitude),
The model reproduces the ozone observations at MBO with
no significant bias. Asian ozone pollution increases ozone
eoncentrations in the model-at MBO by 9.242.5 ppbv for the
INTEX-B time petiod, representing an important contribu-
tion to total ozone in the model (53:£9 ppbv) and its ability
to fit observations (5410 ppbv). The temporal variability
of Asian.ozone in the model is still small and undetectable
in.the observations. The 2000-2006 rise in Asian antliro-
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pogenic emissions increased model ozone at MBO by 3 ppbv
on average and up to 5 ppby in events,

We find that Asian anthropogenic emissions increased sur-
face ozone concentrations by 5-7 ppbv in western North
America during the INTEX-B period. The 2000-2006 rise
in Asian anthropogenic emissions, including in particular
the doubling of NOy emissions, increased that influence by
1-2ppbv. Most of the Asian ozone pollution in western
Canada originates from production in the lower troposphere
over the Asian continent. The western United States and
northern Mexico are more impacted by the southern branch
of transpacific transport, which has sustained ozone produc-
tion during transpacific transport driven by decomposition
of PAN. About half of Asian anthropogenic ozone affecting
the United States is produced in the Asian lower troposphere
while the other halfis produced during transpacific transport.
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[1] We use the GEOS-Chem chiemical transport model and
its adjoint to quantify source contributions to ozone
pollution at two adjacent sites on the U.S. west coast in
spring 2006: Mt, Bachelor Observatory (MBO) at 2.7 km
altitude and Trinidad Head (TH) at sea level. The adjoint
computes the sensitivity of ozone concentrations at the
receptor sites to ozone production rates at 2° x 2.5°
resolution over the history of air parcels reaching the site.
MBO experiences distinct Asian ozone pollution episodes;
most of the ozone production in these episodes takes place
over East Asia with maxima over northeast China and
southern Japan, adding to a diffuse background production
distributed over the extratropical northern hemisphere, TH
shows the same Asian origins for ozone as MBQO but no
distinet Asian pollution episodes. We find that transpacific
pollution plumes transported in the free troposphere are
diluted by a factor of 3 when entrained into the boundary
layer, explaining why these plumes are undetectable in U.S.
surface air, Citation: Zhang, L,, D. J, Jacob, M. Kopacz, D. K.
Henze, K, Singh, and D, A, Jaffe (2009), Intercontinental source
attribution of ozone pollution at western U.S. sites using an
adjoint method, Geophys. Res. Let., 36, L11810, doi:10.1029/
2009GL037950.

1. Introduction '

[2] Intercontinental transport of ozone pollution is
becoming a major issue as countries at northern mid-
latitides strive to meéet increasingly stiingent air quality
standards [Task Force on Hemispheric Transport of Air
Poliution, 2007]. Ozone is produced in the troposphere by
photochemical oxidation of CO and volatile organic com-
pounds (VOCs) in the presence of nitrogen oxides (NOy =
NO + NO,). It has a lifetime of days in the boundary layer
but weeks in the free troposphere [Wang et al., 1998],
enabling transport on the intercontinental scale. Interconti-
nental soutce attribution for ozone pollution at a given site
is made difficult by the complexity and non-linearity in the
chemistry, the multiplicity of sources and time scales, and
the general lack of stiucture of the ozone background
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especially in surface air [Goldstein et al., 2004]. We.present
here a new approach using the adjoint of a cheniical
transport model (CTM) and apply it to examing: the detail
of intercontinental influence on ozone pollution-at- two U.S,
west coast sites.

[3] Previous CTM stidies of intercontinental influence
on surface ozone have used either ozone tracers tagged by
production region. [Li et al., 2002; Jaeglé et al., 2003;
Derwent et al., 2004; Sudo-and Akimota, 2007) or sensitivity
simulations with perturbed emissions [Jacob et al., 1999;

Yienger et al., 2000; Wild and Akimoto, 2001; Derwent et

al., 2008; Duncan et dl, 2008; Fiore et al., 2009)]. These

source-oriented methods are computationally limited. in the:

spatial resolution of the soutce region that they can achieve.
The CTM adjoint offers a far more computationally efficient

approach for a receptor-oriented problem such as source:

atiribution of ozone at a given site. A single run of the
adjoint model ean compute the sensitivity of ozone gongen-

trations at-a given location and time (or an aveyage over a.

spatial domain .and time interval) to the global distribution

of sources over the spatial and temporal . resplution of the.

madel, The method has been applied previously to pollutant
transport to Hawaii [Vukidevié and MHess, 2000; Hess and

Vitkicevié, 2003]; intercontinental transport of aerosol to the-

United States. [Henze et al,, 2008], and regional sensitivity
analyses for ozone pollution episodes [Elbern and Schmidl,
2001; Hakami et al., 2006; Nester and Panitz, 2006},

[4] We use here the GEOS-Chem CTM and its adjoint to
estimate source contributions to surface ozone pollution: in
spring 2006 at two. nearby sites on the U.S, west coast, one
at high altitude (M. Bachelor Observatory, Oregon)-and orfé
at sea level (Trinidad Head, California). The NASA/
INTEX-B aircraft campaign over the northeast Pacific
taking place at that time provided a detailed charaoterization
of transpacific transpott of ozone and its precursors [Singh
et al., 2009], The GROS-Chem simulation was previously
cvaluated in detail with INTEX-B as ‘well as concurrent
satellite and ground-based data, lending confidence in its
representation of transpacific ttanspott [Zhang et al., 2008].
Mt, Baichelor Observatory aftid Trinidad Head are standard
reference sites for background air entering the United States
[Goldstein et al., 2004; Jaffe ! al., 2005, Oltmans et-al.,
2008]. The attitude difference between the two sites allows
us to explore the dilution effect as Asian. pollution plumes
transported mainly in the free troposphere arc. cntrained
down to affect U.S, surface air,

2. GEOS-Chem Model and lts Adjoint

[s] The GEOS-Chem CTM (http://www.as.harvard.edu/
chemistryftrop/geos/) [Bey et al., 2001] is driven by assim-
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Mt: Baschalor Observatery (44.0N, 121,7W, 2700m)

Trinidad Head (411N, 124:2W,107m)
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Figure 1. Time serles of 3-houtly averaged ozone con-
eentratlons at (top) Mt, Bachelor Observatory and (bottom)
Trinidad Hend during the INTEX-B period (April 17—
May 15, 2006). Model results (red) are compared to obser-
vations (black). The contribution of ozone produced over
Asia In the model ig also shown (blue). Black arrows indi-
gate the Asian pollution events discussed in the text,

{lated meteorological data from the Goddard Barth Observ~
ing System (GEOS)-4 of the NASA Global Modeling and
Asgimilation Office (GMAQ). Details. of its. application to
slmulate sptellite, piteraft, and ground-based observations of
ozone and its precursors during INTEX-B (April 17—
May 15, 2006) are given by Zhang et al. [2008]. The
GEOS-4 dataset has a temporal resolution of 6 hours
(3 houts for surface variables and mixing depths); a hori-
zontal resolutlon of 1° x 1.25°, and 55 layers in the vertical.
We degtade the. hotizontal resolution to 2% x 2.5% for input
to GEOS-Chem. We use Asian anthropogenic emissions
from Zhang ot al, [2009] for the year 2006, U.S. anthrapo-
genle omisslons. are from the National Bmission Inventory
for 1999 (NEI 99) by the 1.8, Environmental Protection
Agency (BPA) (hitp/fwww.epa.gov/tin/chief/net/). Trans-
port of ozona from the stratosphere is simulated using the
YSynoz" boundaty condition of MaLinden et al. [2000],
which Imposes a globel cross-tropopause’ ozone flux of
495 Tgu~ ',

[6] Zhang et al. [2008] used a3 GBOS-Chem simulation
with detalled NO,-VOC chemistry for comparison to
INTEX-B observations and for sensitivity analyses, but also

archived daily 3-D fields of ozone production rates and loss

frequancies to raproduce the ozone simulation results vsing
tagged teacers of source regions. This tagged ozone tracer
technlque offers a computationally efficient approach for
tracking the transport of ozone produced in different
teglons, and has been applied in a number of madel studies
[Wang et al., 1998; Li et al., 2002; Sudo and-Akimoto,
2007], We use it here in our adjoint mode! application, We
deflng “Asian ozone” as ozone produced: over Asia (8°N—
55°N, 70°B-152°E) throughout the tropospheric column.
80% of this production is in the lower troposphere below
700 hPa. Asian ozone defined in‘this.way does not-diserim-
{nate between -anthropogenic and natural sources, nor does it
quantitatively resolve ozone production from Asian precur-
sots downwind of the continent. It assigns the source
geogtaphically rather than by precursor emissions. The
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latter would be mote precise for Asian anthropogonic source
attribution but would require an adjoint medel with full
chemistry. Zhang et al. [2008] proviously found by com-
bining the two approaches that half of anthtopegenie Aslan
influence on surface ozone in the western U8, is from
production in the Asien lower troposphiere, with the rekt
from production in the free troposphere and downwind.

[7] The adjoint model of GEQS-Chem was:constracted
and tested by Henze ef al. [2007] in work directed at
constraining aerosol sources, and was further developed
and applied by Kopacz et al, [2009] in an-inverse analysis of
CO omissions, We use the transport component of the
adjoint including advection, boundary layer mixing, and
convection [Henze et al., 2007; K., Singh et al,, Towards the
construction of & standard adjoint GEQS-Chem maodel,
paper presented at High Performance Computing and-8im-
ulation Symposium, Soc. for Madel, and Simul. Int,, San
Diego, Calif,, 2009], We add’ self-adjoint ozone chemisiry
with archived  ozone production rates .and loss frequencies,
The resulting model is-used to compute: the sensitivity of
ozoné concentrations at selected receptér sites to 3D ozone
production rates at 2° x 2.5° resolution for difforont time
lags and over the history of air-parcels reaching the site.

3. Time Series of Ozone at U.S, West Coast Sites

[(] We use ozone meusurements from Mt Bachelor
Observatory (MBO, 44.0°N, 121,7°W, 2700 m) and Trini-
dad Head (TH, 41.0°N, 124.2°W, 107 m), MBO is &
monntain site-in central Oregon that is particularly sensitive
to Asian influences due to its cxposure to: the free trope-
sphere [Jaffe et al., 2005; Weiss-Penzias et al., 2006, Wolfe
et al,, 2007}, TH on the northern California coast is widely
used as a surface: background site for the United States
[Goldstein et al., 2004; Oltmans et ul., 2008; Parvish et al.,
2009). The TH ozone measurements were obtained fiom
http:/fwww.estlnoaa.gov/igmd/obop/thd/,

[9] Figure 1 shows:the 3:hourly observed and modeled
time serics of ozone at MBO and 'TH for the INTEX-B
period. There is good agreemient between the fneusurements
and GEOS-Chem. The. mean observed concentration at
MBO is 54 4 10 ppbyv, compared with 53 = 9 ppbv in the
model, while the mean observed-concentratfon at THis 41 %
7 ppbv, compared with 43 & S ppbv in the model. The modsl
cannotreproduce the low ozone levels-often observed at TH
at night due to local deposition under stiatificd cenditions
[Goldstein et al., 2004], but the synoptic-scale varlability 18
well captured,

[16] The contribution of czone produced over Asia. in the
model (“Asian ozone™) at tho two sites is also shown in
Figure 1, It averages 13 + 3.6 ppbv at MBO and 84
1.4 ppby at TH. This is somewhat larger than the Asian
anthropogenic ozone enhancement derived by Zhang e al,
[2008] from .a sensitivity simulation with-Aslan anthrepo-
genic emissions turned off in the same madel with full-
chemistry (9 + 3 ppbv at MBO). The difference is-due fo
natural production over Asia contributing fo Asian ozone as
defined here; see section 2 for further discussion. The
weaker and less variable contribution at TH than at MBO
can be expldined by dilition of free tropospheric pluries
during entrainment in the boundary layer [Hudman et al.,.
2004]. Model Asian ozone at MBO shows a maximum
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Figure 2a, Sensitivity of ozone concertrations at Mt.
Bachelor Observatory, Oregon (MBO, 2.7 km altitude) to
ozone production worldwide as inferred from the GEOS-
Chem adjoint model; Asian pollution evetits. at MBO ((top)
May 1, 2006, at 00 UT and (middle) May 10, 2006, at
18°UT) as highlighted in Figure 1 and (bottom) the moan for
the INTEX-B perlod (Aptil 17~May 15, 2006). (left) The
sonsitivitlos integrated in time, over the depth of the
tropospherie column and at the 27 x 2,5° grid resolution of
the model, (right) The time-dependent sensitivitles (going
baek in time) to ozone production over Asia, the North
Pacific, North Amerien, and Rest of World (as indicated by
treetangles),

eventon May 1 (26 ppbv) and a broader event on May 611,
eondlstent with independent analyses of Asian pollution
plimes observed ot MBO during INTEX-B [Molfe et dl.,
2007; . Zhang at al., 2008). Asian ozone at TH shows
maxitum influence on May. 12, reflecting subsidence. of
the May 611 MBO plumes,

4. Tine Geographical Source Attribution for
Ozone

{11] Figure 2 shows the sensitivities of ozone concen-
trations at MBO and TH to the global distribution of ozone
production rates. for the previous two months, as inferred
from the GEQS-Chem model adjoint, The left pancls show
the integrals. of the production rates over tine and over the
troposphetie column depths at the 2° x 2.5° harizontal
resolution: of the model. They show the amount of ozone
produced in each grid square and transported to the receptor
slte with chemical loss accounted for during transport.
Summing these values globally over all 2° x 2.5% grid
squates npproximates the ozone concentrations simulsted
by GROS-Chem at the. receptor site; there is a 10%—15%
residunl that reflects production in the stratosphere and
tropospherie production at timoe lags larger than 2 monthis.
The tight panels show the time-dependent sensilivities to
productlon over Asia (8°N--55°N, 70°E-152°E), North
Paeifie (0°N-=80°N, 152°B-232°W), North America
(15°N=80°N, 232°W-295°W), and Rest of World. Simnilar
sensltivity spectra-have been shown by Fikidevié and Hess
[2000], Integrating under these curves gives the total-con-
teibutions.of ozone production in these regions to the ozone
coneentrations at the receptor site,
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4.1, Asian Pollution Events

[12] Figure 2a (top) show the sensitivities of ozone
concentrations at MBO for the transpacific ozone pollution
events of Muy 1 at 00 UT and May 10-at 18 UT, Most of the
ozone production contributing to MBO ozone on these days
took place over East Asia, with maxima ovor the northeast
China plain and southern Japan, We also find signifieant
production over the North Pacific during plume iransport,
The May! plume took a more isortherly and higher-altitude
route than the May [0 plume, resulting in less ozone
production over the Pacific [Zhang et al., 2008], Beth
plurnes show a secondary maximum of ozone production
just off the west coast of United States, where subsidenee of
air masses causes decomposition of Asian PAN (peroxya-
cetyhitrate, a-thermo-unstable NO, reservolt species) and
drives further ozone production [Kofchenruther et af., 2001;
Heald et al,, 2003; Hudman et al,, 2004 Zhang ot al,,
2008). In addition to these divéct Asian pollution influences,
both plumes show a significant background contribution to
ozone from diffuse production in the exiratropical northorn
heriisphere,

[13] The sensitivity speotra-on Figures 2a (right)-and 2b
(right) show.the transport timescales. from production reglon
to the receptor- site, Wo see for the two Asian pollution
episodes. (top two panels) that ozone ptoduced over North
America bad an immediate impact on- MBO; . this mostly
reflects the decomposition of PAN in the subsiding air mass
as discussed above rather than Notth. American emissions,
The North American contribution also shows a weak
secondary peak at 20 days that reflects: ozone produced in
the United States and transported in the westerly atmospherle
cireulation,

[14] We find that ozone production over Asia beglhs to
impact MBO after a 6-day time lag and that maximum
Asian influence for the two events is at time lags of 8=
11 days. This is consistent with previous studies showing
that Asian pollution plumes can be transpotted across. the
Pacific in 5—10 days [Wenger et al., 2000} Stohl et al.,
2002], We related theso time lags to observed cold front
passages over eastern. Asia on April 21 and May 3, lifting
Asian pollution in warm conveyor belts (WCBs) that
enables rapid transport across the Pacific [Liw et al,
2003}, The Asian sensitivity spectra also show a long tafl
similar to the Notth American spechra and indicating the
inipact on background ozone in addition to direct transpert,

[15] The May 12 event at TH (Figure 2b, top) shows
similar source attribution as the May 10 event at MBO and

-y
serevers Nafih Bagifin

~==== Roillt Amefies:
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e Restoivinid 3 MY 12
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Figure 2b. Same as Figure 2a, but for Trinidad Head,
California (TH, sca level), The event is for May 12, 2006, at
15 UT.
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can be interpreted as subsidence of the free tropospheric
plume that affected MBO on May 6—11. The Asian influ-
ence is much weaker at TH. Its sensitivity spectrum peaks at
atime lag of 10 days, 2 day after that at MBO, Integrating
the. Asian sensitivity spectra for the events at MBO and TH
over‘time lags of 5—-20 days (direct transport component as
apposed to background), we find a factor of 3 dilution effect
as the plume mixes down to the surface (15 ppbv at MBO
vs, 5 ppbv at TH). Hudman et al. [2004] previously
estimated a factor of 10 dilution between the free tropo-
sphere and swrface air-for Asian dust plumes observed over
the western. United States.

4.2, Mean Conditions at MBO and TH

[16] Figure 2a (bottom) shows the source attribution for
the mean.ozone coilcentration at MBO.during the INTEX-B
period, The patterns are similar to the Asian pollution events
previously discussed but the influence of direct Asian
transport is weaker, Background production is mainly north
of 20°N. Fine structure in the contributions from source
regions in Asia can still clearly be distinguished, with
maximum contributions from castern China (5 ppbv) and
Tapan (1 ppbv) a§ derived by summing the corresponding
grid :squares. The Tapanese contribution as identified from
the adjoint model is mainly from boundary layer production
and hence associated with local anthropogenic emissions.
Its contribution to transpagific pollution to the U.S, is higher
than would be expected from its NO, emissions (0.7 TgNa ™)
relative to China (6.4 Tg N a™') [Zhang et al, 2009].
Export of Japanese poliutants into the westerly flow of the
North Pacific is more efficient than for China [Wild et dl.,
2004). The mean ozone concentration at MBO is also
sehsitive to sustained production over the North Pacific
from Asian pollution at 25°N-40°N, and particularly off
the North American west coast, as previously discussed by
Zhang et al. [2008],

[17] Figure 2b shows the sensitivity of the mean ozone
concentration at Trinidad Head to production upwind. North
American production is more important than at MBO. Asian
influence is'weaker than at MBO but still shows the Eastern
Cliina — southemn Japan dipole. Asian ozone by summing
the sensitivities. over Asia is 8 ppbv at TH, consistent with
studies using soutce-oriented methods [Jaeglé et al., 2003;
Goldstein et al., 2004; Zhang et al., 2008]. The peak in
Asiat influence is at a time lag of 16 days, as compared to
12 days at MBO, reflecting the delay and dilution during
entiainment from the free (ropospheré. to the surface. The
mean transport time from Asia, calculated as the sensitivity-
‘weighted mean time lag [Vukicevié and Hess, 2000), is
23 days for MBO and 27 days for TH, comparable to the
mean- fransport time of 23 weeks from East Asia to the
western Notth America sutface previously estimated by Lin
and Mavzerdll [2005].

[18] In swmmary, we have shown that an adjoint model
analysis can provide detailed geographical and temporal
information on intéicontinental poltution influences at spe-
gific receptor sites. Such information can be used to better
determine: the sources of this intercontinental pollution,
-down to.the secale of individual source countries and urban
areas. For policy purposes it will be important to- attiibuite
intercontinental ozone pollution fo the actual emissions of
ozone precursors, in particular NO,, taking advantage of the
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fine resolution enabled by the adjoint. This requires an
adjoint of the model chemical mechanism to resolve the
non-linearity on ozorie production and hence a more elaborate
calculation than was presented here.

[19] Acknowledgments. This work was finded by the NASA Atmo-
spheric Chemistry Madeling and Analysis Program and by NASA Head-
quarters under the Barth and Space Science Fellowship Program Grant
NNXO07ANG5H to Lin Zhang.
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China I8 the world's largest. emitter of anthropogenic air poliu-
tants, and measurable amounts of Chinese pollution are trans-
portad via the atmosphere to other countiles, Including the United
Statas, Howavaer, a large fraction of Chinese emisslons Is due to
manufacture of goods for foreign consumption. Here, we analyze
the Impacts of tracie-relatad.Chinesae alr pollutant emissions on the
tjlabal atmospheric environment, linking an economic-emission
analysle and atmospherlc chemical transport modeling. We find
that in'2006, 36% of anthropoganic sulfur dloxide; 27% of nitro-
gen oxldes, 22% of carban monaxide, and 17% of black carbon
emitted In China ware assoclated with production-of goods. for
export, For each of these pollutants, about 21% of export-related
Chlnese emlssions were attributed to China-to-US export. Atmo-
sphari¢ madaling shows that transport of the expoit-related Chi-
nese. pollutlen contributed 3+10% of annual mean surface sulfate
conceantrations and 0,5-1,5% of ozone dver the wesfern United
States in 2000, This Chinese pollution also resulted in one extra
day or more of noricompliance with the US ozane standard in 2006
.ovar the Les Angeles area and many reglons in the eastern United
States; On a daily bosls; the export-related Chinese pollution con-
tributed; at a maximum, 12-24% of sulfate concentrations over
tha western Unitad States, As the United States outsourced
manufacturing to China, sulfate pollution In 2006 Increased ‘in
the westarn United States but decreased In the eastern United
Statas, reflacting the competing effect between enhariced trans-

. part of Chinase pollution and reduced US emisslons. Our findings
are relavant to international efforts to reduce transhoundary
alr pellution, . . .- !

4 1 : . ., .
Input=eutput analysis | amission contral | ternatlonal collaboration

Akey defver of the rapid economic growth in China over the
”~ dpust decnde I8 the great expansion in' the production of
goods for export (1), -Although growth has:slowed since the
global finanelal erlsis, between 2000 and 2007 the volume of
Chinese exports grew by 390%-(2), As the Chinese economy has
grown, the sgonomie stracture his also changed, transitioning
from 4 net importer to a largé net exporter of energy-intensive
Industtial produets (2). The energy needed to support thils eco-
nonie growth and transformation 'has come from combustion of
fosall fuels, primarily conl, which. has contributed to a global
inerease in-emisslons of carbon dioxide.(CO3) (3, 4). At the same
tlme, inerensed combustion of fossil fuels, relatively low com-
bustion effieieney, and weak emission control measures have also
led to drastic increases in gir pollutants such as sulfur dioxide
(80a), nitrogen. oxides (NO,), carbon monoxide (CO), black
earhon (BC), and primary -organic carbon (OC) (5-8). Indeed,

fossil-fiiel-intensiva manufactuting, large manufacturing volume,.

und relatively weak emission controls have meant that China
emits far more pollutants per vunit of gross domestic product
(GDP) than countries with more advanced industrial and
smisslon eontrol technologles (1 Appendix, Table S1). Per unit
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of GDP in 2006, China emitted 6-33. times an much alr pollu-
tants as the United States (Fig. 1 £~H), For these reasons, alr
quality has recently become a major focus of environmental
policy in China. (8). ,

In this study, the terms “export,” “import,” and “trade” all
refer to transaction of goods between countries, The pollutants
emitted in China due to its production of goods for forelgn
consumption: are regarded as emissions enibodied In export
(EEE) of China (9, 10). The EEE is unique in that the assoelated
goads are consumed outside of China, raising a question about
the extent to. which. China and its export partners should be ag-
countable for the emissions (10-12); The attribution depesnids on
whether the. emission accounting is based on produétion. or-on
consumption. Production-based accounting considers all emis-
sions physically produced in. China to be Chinese emissions, in-
cluding the EEE. Such accounting is vsed as default In eurrent
emission inventories such as the Emission Database for Glabal
Atmospheric Research (13), By compatison, consumption-based
accounting views all emissions assoclated with produetion: of
goods ¢onsumed by China to be China’s responsibility; no matter
whether the production oceurs in China or In-other countrles (9,
10), Thus, the consuimption-based Chineso omisslons exclude the
EHE but include the emisslons embodied in import of China
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fig. 4. Alr pollutants ambodied In Chinese trade between 2000 and 2009, (A-D) Production-based emissions {thin lines), consumption-based emisslans (thick
lines), and thalr diffarances {l.e, Chinese EET assoctated with its trade with the rest of the world In purple shading, and EET essoclated with Sino-US trade
alene In green shading), All Chinese emissions are calculated here, the US production-based emissions are taken from the Natlonal Emissians inventery, and
the US eansumption-based emisslons are derived based on production-based emissions and Sino-US trade-relatecd emissions, Although China's production- g
hased emissiens are grewlng rapldly, its EET are equlvalent to substantial fractions of the production-based emissions. Similarly, the EET due to Sine-US trade
( ) ara aqulvalent to large proportions of the production-based US emissions since 2006. (E=H) Emissions per GDP. Although China's production-bhased emissions
) per utilt GDP have baen dacreasing, Its consumption:-based emissions. per unit GDP have decreased less significantly or have increased sinee 2008, (-L)
Erlssions per eaplta, Per capita emissions are very different between the United States and China, and this disparity Is increasad when the consumptlen-based
ermissions are eonsidarad; For data sourcas, see Si Appendix, Table 51, footnote,
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flg.2, Simulated percentage contribution of surface air pollution in 2006 from Chinese EEE for (4) sulfate, (B) ozone, (C) BC, and (D) €O, Results are shown
{ar annual maan concantrations in tha lowest model layer (0~130 m); presented as (simulation 1 - simulation 2)/simulation 1 In the S! Appendix, section 6, The
color seale ls nenlinear to hetter present the wlde range of Impacts over different regions. The Chinese EEE affact pollutant concentrations most signlficantly
ever €hina, but thay afso affact the rest of East Asia, the Arctic, western North-Amarica, and other regions downwind of China, The negative impaets en
o76N&- eoneantrations ovar parts.of the northern Chinese provinces are primarily because the. EEE-refated NO, emissions increase the ozene sink In the
nlghttime overcompensating for tha effact of enhanced-ozone production in the daytime.

(BEIL, ie., emissions in other countries due to production of
goods for Chinese consumption). The numerical ditference be-
tween production- and consumption-bused emissions of China is
the BEER less the EEL the result of which is regarded as the
emlssions embodled in net trade (BET) of China (10), Similar
emlssion analyses are applicable to other countries,

Prevlous studies have quantified the substantial CO, emissions
embodled 11 Chinese trade (10, 11). Thus, far, however; rela-
tively little attention has been paid to trade-related emissions of
shart=lived aly pollutants and especlally the resulting impacts on
the global atmosphetic environment, except for an analysis done
for Toeal alr quality of the Pearl River Delta (14). This is true
despite the direct harm these pollutants do to human health (15~
'183, ngrieulture (19), ecosystems (20), and global climate (21,
22), And as selentiflc evidence of transport of Chinese air pol-
luflon across the. Pacific Ocean has grown since the late 1990s
(23=29), the United States and Canada have a special interest in
tetlucing Chinese air pollution, In.the case of CO,, consumption-
based accounting of emissions has been motivated by the argu-
iment—often made by developing countries—that consumers
who beneflt from a process should bear some responsibility for
nssoelated environmental damage (30). A similar accounting for
emieslons of alr pollutants.and consequent impacts on the global
atmospherle environment may therefore be necessary to facili-
tute dikcussion of international collaborations on transboundary
alr pollution control (31),

We. quantlfy the emissions of 80, NO,, CO, BC, and OC
embodied In Chinese exports and imports. between 2000 and
2009 yslng an economie input-cutput model constincted from
aconomie and emission data, The model resolves trade between
China and four countrieweglons [the United States; the Buropean
Unlen (BU), Japan, and an aggregated region of all other
couritrles] and 42 industry sectors, and allocates. pollutant
emisslons to counttles and industry sectors according to where
goods are eansumed. As part of our analysis, we also quantify the

1738 | www.pnas.ergleglidel/10.1073/pnes.1312860111

wricertainties in emission derivation using & Monte Carlo ap-
proach, We then simulate the éffects of export-related Chinese
emissions on air pollution in China and downwind reglons, using
the GBOS-Chem . global chemical transport model, See SI Ap-
pendix for details of our analytic approach, data sources, and
model simulations.

Results

Fig. 1 A~D shows the trends over 20002009 in the BET of China
related to its trade with the rest of the world (purple shading)
and in the BET with respect to Sino-US {rade alone (green shad-
ing); together with the production- and consumption-based emls-
sion accounting for China and the United States, For China,
although the. production-based cmissions of 80, and BC have
declined since 2007 due-to the global financial erisls and sullur
emission control, the consumption-based emissions of all pal-
lutants have continuted to rise, reflecting a not decroase In the BEET,
Nonetheless, the. BET were equivalent to a large fraction of pro-
duction-based Chinese entissions, and this fractlon expanded be-
tween 2000 and 2006. For example, the BET of SO, grew fiom 4.0
teragrams (Tg) (equivalent to 18% of production-based Clinese
emissions) in 2000 to 10.3 Tg (30%)-in 2006 (Fig, 14), The {raction
of the EET grew similatly for NO,, €O, and BC (Fig, 1 B=D),
Meanwhile, although the BET for Sino-US trade were equivalent
only to 2-8% of production-based US emisslons in 2000, the pre-
portion grewby a factor of 2-3 to rouch 6-19% in 2006 (Fig, 14=D),
This trend reflects the decline of production-based emissions of the
United States and its continuous outsourcing (32):

Although the BET represent thie difference botwesn the EEE
and the EEI, the BET of China were numerically close to. its
EEE over 2000-2009. This is because the EEE of China are
larger than thé EEI by a factor of 4-6 during thess years,
reflecting China’s trade imbalance with the rest.of the world, the
types.of goods being traded, and (he differences in enilssion In-
tensity between China and its trading partriers (S/ Appendix,

Linetal

OAK 2506

@

()




\
,/)

section 5.2), In 2006, the Chinese EEE contributed 36% of its
production-bused emissions for 8Oy, 27% for NO,, 22% for CO,
and 17% for BC, And for all these pollutants, about 21% of the
Chinese EEE In 2006 were attributed to China-to-US cxport
of goods,

Flg, 1 B=H shows that Chinese emissions per unit of GDP have
mostly deerensed between 2000 and 2009, However, the pro-
ductlon-based emissions per-unit GDP have recently decreased
at a faster rate than have the consumption-based emissions. per
unit GDP, In the case of NO,, the consumption-based Chinese
eiisslons per unit GDP have actually increased since 2008 (Fig,
1F), Meanwhlle, emissions per unit GDP have also declined in
the Unlted States, regardless of whether or not the emissions
embodled in Sino-US trade are included (Fig, 1 E-H). The
emlaslons. pet unlt GDP for China are much greater than-those
for the United States, based on both production- and con-
sumptlon-based aceounting. In 2009, the production-based
enlsslons per unit GDP for China were about 6-17 times greater
than the Unlted States, The difference in consumption-based
emlasions per unit GDP was somewhat less: 5-14 times greater in
China than the United States,

Flnally, Fig, 1 I-L illustrates the large gap in emissions per
eaplta between the United States-and China, Over.2000-2009,
the BET per eapita for China related to its trade with the rest of
the wotl (Furple shading) were close to the EET per capita
for the United States related to Sino-US trade alone (green
shadhlg?. For China, although the production-based emissions
gar eaplta have fallen or flattened since 2007, the consumption-
bused emlsslons per cupita have increased (Fig, 1 I-L). This
agalil suggests that the global financial exlsis affected Chinese
exports but did not stem domestic growth. The trends contrast to
the reductions in both production- and consumption-based
emiasions pet eapita for the United States.

Using the QBOS-Chem chemical transport model, we simu-
lated the Impacts of the EEE-related Chinese pollution on the
global atmospherie environment in 2006 (ST Appendix, section 6
{or deserlptions of varlous model simulations). Fig. 2 shows the
modeled percentage of annual mean surface pollutant concen-
tratlons In the Northern Hemisphere in 2006 attribytable to the
atmospherle transport and transformation of the EEE-related
Chinege alr poliutlon, The ERE-related Chinese pollution accoun-
ted for 23-34% of sulfate concentrations, 10-23% of BC, and
12-23% of CO over Bast China (cast of 100°E), This pollution
resulted In ozone reductions over the North China Plain and
Nerthenst China with ozone enhancements: over the southern
provinges, The mixed impacts reflect the nonlinear chemical
proeesses that govern the ozone level: The additional NO due to
Chinese EEE enhanced the nighttime ozone loss, compensating
for the effect of enhanced daytime ozone production (33).

Flg. 2 shows that, through the atmospheric transport and
transformation, parts of the EEE-related Chinese pollution in
2006 affected the surface alr pollutant levels over the rest of East
Asln, the North Paclfic, western North America, Arctic, and
other teglons downwind of China. In particular, the EEE:related
Chinese pollution contributed about g—’lo% of the annual mean
surfnce sulfate concentrations; 1-3% of BC, 2-3% of CO, and
0:5=1,5% of ozone over the western contiguous United States
(west of 100°W). On a monthly basis, the trans-Pacific transport
of Chinese alr pollution was.enhanced in spring (SJ Appendix,
Fl% 33’3 due to setive cyclonic activities and strong westerly winds

2 (] ’

The teans-Paclfic transport is largely opisodic (28, 35), such
that the influence of Chinese pollution on US air quality varies
slgnificantly from one day to another, Fig, 3 shows the maximum
eontribution of EEE-related Chinese air pollution to daily mean
surface alr pollutant concentrations over the United States in
2006, On a day-to-day basis, the transport of BEE-related Chi-
nese pollution contributed, at a maximum, 12-24% of sulfate
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fig. 3. Simulated maximum percantage contribution of Chiness EEE to dally
mean US surfaca air pollution tn 2006 for {4) sulfate; (8) ezene, (€) BG;.and (B)
€O, Results are presented-as the maximurn value across the 365 d-in 2006 of
(siulation 1 — simulation 2)simulation 1 In SI"Appendix, section 6, Results
outside of the contiguous United States are colored In gray. The maxlmum
contribution of EEE-related Chinese air pollutlon te US pallutant levels
on a day-to-day basls Is much. greater than the annual mean Infiyence,

concentrations, 2-3% of ozone, 4-6% of CO, and up to:11% of
BC over the'western United States; and it also contributed up to
8% of daily mean ozone over parts of the Great Lakes reglon,
Futthermore, the- trans-Pacific transport inereased the number -
of days in 2006 when the daily maximum 8« average ozone
concentration exceeded the: curtent US standard (75 pph), For
the 217 model grideells constliuting the contiguons United
States, there are 38 grideells that had one extra day or more-of
ozone exceedance in 2006 because of tho transport of the BEE-
related Chinese:air pollation, including the grideells covering the
Los Angeles area and many rogions in the oastorn United States
(81 Appendix, Fig. SB).

In 2006, China-to-US export of gaods resulted In about 7.4%
of the production-based Chinesc emisslons for SO, 5§.7% for
NO,, 3:6% for BC, and 4.6% for CO, Meanwhile, evtsourcing
manufacture to China also led to .a reduction in production-
based US emissions, Had the United Statés produced all of the
goods that are actually imported from China under a hypothetl-
cal scenario, we estimate that the production-based US emis-
sions in 2006 would be higher by 1.7% for 803, 1.3% for NO,,
0.8% for BC, and 1.1% for CO, after accounting for the differ-
ence in emission intensity between the two countrles (ST Ap-
pendix, Table $1), No China-to-US exports would also mean less
production-based Chinese emissions, We used GEOS-Chem to
simiilate the changes in 2006 surface air quality in China and the
United States due to emission changes In both countries with
versus without China-to-US cxports; assuming the spatial vari-
ability of emissions to be unaffected. The modeling results In
Fig. 4 show that about 3~7% of annual mean sarface sulfate
concentrations, 2-5% of BC, and 2-5% of CO over East China
in 2006 were caused by the Chinese BEE due to its production of
goods for US. corisumption, Over:the eastern United States (east
of 100°W), annual mean surface concentrations in 2006 were
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Fig. 4. -Simulated parcantage change In 2006 surface alr-pollution due te Chinese export of goods to the-United States.versus producing the same goods In
tha United States for (A) sulfate, (8)-ozone, (€) BC, and (D) CO, Results are shown. for- annual mean concentrations In the lowast model layer (0=130 m),
presented as (simulation 1 - simulation 6)/simulation 1 In the 51 Appendix, section 6. The color scale Is nonlinear to better prasent the wide renge of [mpacts
aver different reglons, The China-to:US export of goads results in enhanced (production-based) emissions of China with a reduction in US emisslens, Alr
quality In €hina wersens ss o result of these additional emissions, Gver the western United States, concentrations of sulfate, ozone, and CO also. Inerease
because the elovatad transport of Ghinese pollution overcompensates for.the effect of reduced US emissions. Meanwhile, concantrations of sulfate, BE, and
€0 dacraase aver the eastern United States, a beneficlal effect particularly given its high population density.

teduced by 0.5-1,1% for sulfate, 0.5-0.8% for BC, and 0-0,5%
for €O as a result of US emission reductions. due to outsourcing
manufacture to Ching, Over the western United States, however,
suifate concentratlons were: enhanced by 0-2% and ozone and
€O levels wetre also Increased slightly. These inoreases occurred
lseeavse the transport of EEEsrelated Chinese pollution over-
compensated for the effect of reduced US emissions, Given the
much lilghex population density in the. eastern United States
(Hittp:/fsedac.ciesincolumbia.edi/data/collection/gpw-v3; fot 2005),
outsourelng manufacture to China resulted in an overall benefi-
elnl effeet for the WS public health, In particular, population-
we_ighta.d gverage sulfate, BC, and CO concentrations decreased
by 0:3=0.9% over the United States (125°W-70°W, 33°N-49°N)
with a neglizlble Increase 0£0.1% in ozomie, Thisbenefit, however,
was at the expense of air quality deterioration over the western
United States and the populous Chinese regions,

Our emlsgion and atmospherle model results are subject to
uneettalnties from u variety of sourves, The emission calculations
are affected by errors In emission factors, economic statistics,
and nput=output tables. A detailed error anslysis for total
emissions, REE, and EEI is presented in the ST Appendix, sec-
tlons 3 and 5.3, based on Monte Carlo simulations, For EEE, the
overall uncertaintles (95% .conlidence. intervals around the

-central -estimates) are about ~17% to 17% for SO;, ~27% to
279 for NO,, =45% to 45% for CO, and —35% to 51% for BC.
The uncertainties for EEI are larger for these pollutants
teflecting our simplified treatment of BEI (1 Appendix, sections
1.1,1 and 5.3). The uncertainties for EET are close to those for
BEE. The atmospherie model simulationa aré subject to esfors in
emisslon inputs-as well as ervors in the model representations

1740 | www.pnas.orglegi/dol/t0,1073/phas, 1312860111

of troposphetic. chemical and meteorological procesies. The
chemistry- "and meteorology-related model uncertalnties are
difficult to quantify and are Tikely on the order of 309 (36), For
the model results in Pigs, 2-4 presented as percentage contri-
bution, the uncertaintics-may be reduced substantially beeause
the prescnited values are the normalized differences between
pollutant concentrations from various model simulations (S7
Appendix, section 6) whose uncertainties may largely offvet each
other. Our modeling results are for 2006, and the results may be
different for other years,

Discussion

Rising emissions produced in China are a key reason global
emissions of air pollutants have remained at.a high level during
2000-2009 éven as emissions produced in the United States,
Europe, and Japan have decrcased, However, our results in-
dicate that about 36% of 8O, and 27% of NOj emitted in China
in 2006 (19-24% in 2009) were related to goods exported for
consumption outside: of China, If all of the emissions were
reallocated according to where goods are consumed (lie,, based
on consumption-based accounting), emissions of many. of China's
trade partners would be much higher, For example, the US
etissions for §Q,, NO,, CO, and BC would be 6~19% higher in
2006 if the emissions. embodied in its trade with China were in-
cluded (Fig. 1 4~D; thick green versus thin grgen lines), And as
we have also shown, outsourcing production-to Ching does not
always relieve consumers in the United States—or for that
mattei many countries in the Northern Hemisphere=from the
environmental impacts of air-pollution, Sulfate alr quality In the
western United States is poorer because-of transport of Chinese
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pollution pssoclated with production of goods for US con-
sumption, although air quality in the -eastern United States
is Improved, . :
The ;thin purple lines .in Fig, 1 £-H show the significant
grogregs China hus made since 2000, in reducing the (production-
ased) emisslons per unit GDP through-technological improve-
nients und changes: In economic structure (7, 37). In particular,
80, emisslons per unit GDP are gdeereasing rapidly since 2004
(38? (Flg., 1E), However, the emissions per unit GDP for all
ollutants remdin much higher than:those of the United States
Flg, 1 E-H), and further improvements in technology and
ecenomie:structure could reduce emissions of pollutants much
more, Differences in the ratio of pollutant to CO, emissions
batween the United States and China (87 Appendix, section 7 and
"Table $11) Indlcate that production-based Chinese emissions
eould ba reduced by 58-62% for 8O, 47-54% for CO, and up to
22% for NO, aver 20002009 if China-were to enhance encrgy
efficlensy and deplay emission control technologics as. effective
ad those used 1n the United States. Even if such improvements

- were made to only those facilitics involved in producing goods

for expott, the reduction In:emissions would significantly im-
rove the alr quality in China and in downwind regions. For
nstanee, the annual mean surface sulfate -concenirations in

2006 would have been about 10-~19% lower in China and 1-5%

fawer in the western United States based on the simulation

of GEOS-Chem. .

Conslderation of international cooperation to reduce trans-
boundary transport of air pollution (31) must confront the
question of who 18 responsible for emissions in one country
during produetion of goods to, support consumption in another,

Polluting Industries in China and other emerging economies supply

. Intge proportion of global consumption through: international
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